. I R 92 SA ST 2

— — Data Process

B }3} G SHEEER A 1 IS BRATSESAS A RATE
\&

' Contents

. Methods of combining SAS data sets
. Transpose

. Subset

. Data View

B\ dosecimsit SHimsmRas 2 AR SESAS R

' Methods of Combining SAS Data Sets

. Contents

» Concatenating
» [nterleaving

» Merging
» Updating
» Modifying
B\ dosecimsit SHimsmRas ; PR SESAS R

‘ Concatenating (1)

0 Concatenating

» Append the observations from one dataset to another
» YOu can concatenate SAS data sets by using

B)

B/
<4

[the SET statement in a DATA step
[the APPEND procedure

s S Al b e

SAS Data Set A

SAS Data Set C

Hum

Varf

Hum

Varg

1
z
3

Al
A2
A3

1
2
4

Bl
B2
B3

|—ltlunn[:ﬂ#ﬂn'ﬂte4

Comhbined SAS Data Set

Hum

Varh YarbB

1

= M

A1

AE

&3
El
Bz
B3

R ST SAS S R 4mTE

‘ Concatenating (2)

§ Concatenating data sets with the SET statement

» General form, basic DATA step for concatenating:

DATA output-SAS-data-set;
SET SAS-data-set-1 SAS-data-set-2;
RUN/,

where
output-SAS-data-set names the data set to be created
SAS-data-set-1 and SAS-data-set-2 specify the data sets to be read.

» You can specify any number of data sets in the SET statement.
» The number of observations and variables in the new data

set is the sum of the number of observations and variables

In the original data sets.

B PR IR SRR AL 5 RS ISASE R
\&

& Example

A

Num Var

1 al
2 a2

B

‘ Concatenating (3)

Data c;,

Set a b;
Run;,

Var

Num Var

1 Dbl
2 b2

B e

v

N DN

al
a2
bl
b2

R ST SAS S R 4mTE

‘ Concatenating (4)

g Using the SET statement

» \When original datasets contain different variables, new dataset have
missing values for non-common variables for source observations.

A
Num VarA C
1 al Data c; Num VarA VarB
2 22 Set a b; 1 al
Run;,
B > 2 a2
Num VarB 1 bl
1 bl 2 b2
2 b2
B }3} I SRR AR 7 ISERFSESAS B R

&

‘ Concatenating (5)

» Original datasets contain same variables with different attributes (type,

length, informat, format, label):
[When variables have different types, SAS issues an error message and does
not concatenate the datasets.
In the previous example, if you define the variable num as character in dataset

A while as numeric in dataset B, resubmit the program and SAS writes the
following error message to the log.

ERROR: Variable Num has been defined as both character and numeric.
One way to correct the error is to change the type of the variable num.

[When variables have different lengths, SAS takes the length from the first
data set that contains the variable.

[When variables have different Formats, Informats or labels, SAS takes the
attribute from the first data set that contains the variable with that attribute.

B P} I SRR AR : ISR A IR
\&

' Concatenating (6)

0 Concatenating data sets using the APPEND procedure

» The APPEND procedure has the following form:
PROC APPEND BASE=base-SAS-data-set
<DATA=SAS-data-set-to-append>
<FORCE>;

run;

» base-SAS-data-set names the SAS data set to which you want to append the
observations.

If this data set does not exist, then SAS creates it. At the completion of PROC
APPEND, the value of base-SAS-data-set becomes the current (most recently
created) SAS data set.

» SAS-data-set-to-append names the SAS data set that contains the observations
to add to the end of the base data set. If you omit this option, then PROC
APPEND adds the observations in the current SAS data set to the end of the
base data set.

» FORCE
forces PROC APPEND to concatenate the files in some situations in which the
procedure would normally fail.

B 13) I SKEEERAS 9 ISERFSESAS B R
\&

‘ Concatenating (7)

0 Example
A
Num Var
C
1 al
Num Var
2 a2 Proc append base=a data=b; 1 a1l
Run;,
B > 2 a2
Num Var 1 bl
1 bl 2 b2
2 b2
B @ I SRR AR 10 PR TSSAS I SR

&

‘ Concatenating (8)

9 Using the APPEND procedure

» |f the BASE= data set contains a variable that is not in the DATA= data
set, then PROC APPEND concatenates the data sets and assigns a
missing value to that variable in the observations that are taken from the
DATA= data set.

» |f the DATA= data set contains a variable that is not in the BASE= data
set, then the FORCE option in PROC APPEND forces the procedure to
concatenate the two data sets. But because that variable is not in the
descriptor portion of the BASE= data set, the procedure cannot include
it in the concatenated data set.

» Each data set contains a variable that is not in the other. It is only the
case of a variable in the DATA= data set that is not in the BASE= data
set that requires the use of the FORCE option. However, both cases
display a warning in the log.

B 13} SR SRR AL 1 PR TS SAS A SRR
\&

‘ Concatenating (9)

» Original datasets contain same variables with different attributes (type,

length, informat, format label):

» |f a variable has different attributes in the BASE= data set than it does

in the DATA= data set, then the attributes in the BASE= data set prevalil.
In the cases of differing formats, informats and labels, concatenation
succeeds.

» |f the length of a variable is longer in the BASE= data set than in the

DATA= data set, then the concatenation succeeds.

» |f the length of a variable is longer in the DATA= data set than in the
BASE= data set, or if the same variable is a character variable in one
data set and a numeric variable in the other, then PROC APPEND
fails to concatenate the files unless you specify the FORCE option.

B ?} SR SRR AL 12 PR TS SAS A SRR
\&

' Concatenating (10)

» Using the FORCE option has these consequences:

[The length that is specified in the BASE= data set prevails. Therefore,
SAS truncates values from the DATA= data set to fit them into the
length that is specified in the BASE= data set.

[The type that is specified in the BASE= data set prevails. The
procedure replaces values of the wrong type (all values for the
variable in the DATA= data set) with missing values.

B N b5 SERammea 13 SRR ST SAS TS e

nnnnnnnnnnnnnnnnnnnnn

X

‘ Concatenating (11)

» Differences between the SET Statement and the APPEND Procedure

you can concatenate

number of data
sets

Criterion SET APPEND
Statement Procedure
Number of datasets that | Uses any Uses two data sets

Handling of data sets
that contain different
variables

Uses all
variables and
assigns missing
values where
appropriate

Uses all variables in the BASE= data set and
assigns missing values to observations from
the DATA= data set where appropriate.
Requires the FORCE option to concatenate
data sets if the DATA= data set contains
variables that are not in the BASE= data set.
Cannot include variables found only in the
DATA= data set when concatenating

the data sets.

B\ dbmsit Syramas

BA i
g

14

R ST SAS S R 4mTE

‘ Concatenating (12)

» Differences between the SET Statement and the APPEND Procedure

Criterion

SET Statement

APPEND Procedure

Handling of different
formats, informats, or
labels

Uses explicitly defined formats,

Informats, and labels rather than
defaults. If two or more datasets

explicitly define the format,
informat, or label, then SAS
uses the definition from the
dataset you name first in the
SET statement.

Requires the FORCE option
If the length of a variable is
longer in the DATA= dataset.
Truncates the values of the
variable to match the length
in the BASE= dataset.

Handling of different
Variable types

Does not concatenate the data
sets.

Requires the FORCE option
to concatenate datasets.
Uses the type attribute from
the BASE= dataset and
assigns missing values to the
variable in observations from
the DATA= dataset.

B\ dbRmit SHEmERa s s

Ba st
g

G R F ST SAS = & 4=

Interleaving (1)

§ Interleaving
» |f you use a BY statement when you concatenate data sets, the result is
interleaving. Interleaving intersperses observations from two or more data
sets, based on one or more common variables.

» General form, basic DATA step for interleaving:

DATA output-SAS-data-set;,
SET SAS-data-set-1 SAS-data-set-2,
BY variable(s) ,

RUN;,

where

output-SAS-data-set names the data set to be created
SAS-data-set-1 and SAS-data-set-2 specify the data sets to be read
variable(s) specifies one or more variables that are used to interleave
observations.

» You can specify any number of data sets in the SET statement. Each
input data set must be sorted or indexed in ascending order based

on the BY variable(s).

B PR SR SRR AL 16 PR TS SAS A SRR
\&

‘ Interleaving (2)

Data c;,
Set a b,
By num/
Run,

g Example
A
Num VarA
1 al
3 a2
B
Num VarB
2 bl
4 b2

B\ dbxemsiSHmmmias
\&

17

C
Num VarA VarB
1 al
2 bl
3 az
4 b2
s BR ST SASE R AT

‘ Interleaving (3)

» Understanding the interleaving process

When interleaving, SAS creates a new data set as follows:

[Before executing the SET statement, SAS reads the descriptor portion of
each dataset that you name in the SET statement. Then SAS creates a
program data vector that, by default, contains all the variables from all data
sets as well as any variables created by the DATA step. SAS sets the
value of each variable to missing.

[SAS looks at the first BY group in each data set in the SET statement in
order to determine which BY group should appear first in the new data set.

[SAS copies to the new data set all observations in that BY group from
each data set that contains observations in the BY group. SAS copies from
the data sets in the same order as they appear in the SET statement.

[SAS looks at the next BY group in each data set to determine which BY
group should appear next in the new data set.

[SAS sets the value of each variable in the program data vector to missing.

[SAS repeats steps 3 through 5 until it has copied all observations to the
new data set.

-

B PR IR SRR AL 16 RS ISASE R
\&

‘ Merging (1)

0 Merging
» Merging combines observations from two or more SAS data sets
Into a single observation in a new SAS data set. The new data set
contains all variables from all the original data sets unless you
specify otherwise.
» YOou can merge SAS data sets by using

[one-to-one merging
[match merging

B N b5 SERammea 19 SRR ST SAS TS e

nnnnnnnnnnnnnnnnnnnnn

X

‘ Merging (2)

» One-to-one merging

[you do not use a BY statement. Observations are combined based on
their positions in the input data sets.

A
Num VarA
- al Data c;, C
2 a2 merge a b,
Run; Num VarA VarB
= " al bl
Num VarB
a2 b2
1
3 b 5 b3
4 b2
5 b3
B Q IbEEm it SHIREERAS 20 s BR ST SASE R AT

&

‘ Merging (3)

» Match-merging

[Merging with a BY statement enables you to match observations
according to the values of the BY variables that you specify. Before you

can perform a match-merge, all data sets must be sorted by the variables
that you want to use for the merge.

A
Num VarA Data c;
1 al merge a b, c
by num; Num VarA VarB
2 a2 Run -
. ’ ‘ 1 al bl
Num VarB 2 az b2
1 b1 3 b3
2 b2
3 b3
B\ TRemb SREEERAR 2 PR TS ISASTE R

&

' Merging (4)

» In order to understand match-merging, you must understand three

key concepts:
BY variable: is a variable named in a BY statement.

BY value : isthe value of a BY variable.

BY group : is the set of all observations with the same value for the BY
variable (if there is only one BY variable). If you use more
than one variable in a BY statement, then a BY group is the
set of observations with a uniqgue combination of values for
those variables. In discussions of match-merging, BY groups
commonly span more than one data set.

B\ IEFe g SRR A 2 SRS SASE S

-B/;\ ccccccccccccccccc

' Merging (5)

» Match-merge processing

[match-merging can be complex, depending on your data and on the
output data set that you want to create.

[To predict the results of match-merges correctly, you need to
understand how the DATA step performs match-merges :
When you submit a DATA step, it is processed in two phases:

© the compilation phase
O the execution phase

B 13) I SKEEERAS 2 ISERFSESAS B R
\&

‘ Merging (6)

0 Compilation phase

» To prepare to merge data sets, SAS

[reads the descriptor portions of the data sets that are listed in the
MERGE statement

[reads the rest of the DATA step program
[creates the program data vector (PDV) for the merged data set

[assigns a tracking pointer to each data set that is listed in the MERGE
statement.

» |f variables that have the same name appear in more than one
data set, the variable from the first data set that contains the
variable (in the order listed in the MERGE statement) determines
the length of the variable.

B 13} I SKEEERAS 24 PR BSESAS B
\&

' Merging (7)

0 Execution phase

» SAS sequentially match-merges observations by moving the pointers
down each observation of each data set and checking to see whether

the BY values match:

[If Yes, the observations are written to the PDV in the order in which the data
sets appear in MERGE statement. Values of any same-named variable are
overwritten by values of the same-named variable in subsequent data sets.
SAS writes the combined observation to the new dataset and retains the values

in the PDV until the BY value changes in all the data sets.
[If No, SAS determines which of the values comes first and writes the

observation that contains this value to the PDV. Then the contents of the PDV
are written to the new data set.

When the BY value changes in all the input data sets, the PDV is initialized to
missing.

B 13) I SKEEERAS 2 ISERFSESAS B R
\&

' Merging (8)

& Handling unmatched observations and missing values

» By default, all observations that are written to the PDV, including observations
that have missing data and no matching BY values, are written to the output
data set. (If you specify a subsetting IF statement to select observations, then

only those that meet the IF condition are written.)

[If an observation contains missing values for a variable, then the
observation in the output data set contains the missing values as well.
Observations that have missing values for the BY variable appear at the top
of the output data set.

[If an input data set doesn't have a matching BY value, then the
observation in the output data set contains missing values for the variables
that are unique to that input data set.

B P} I SRR AR 26 ISR A IR
\&

‘ Merging (9)

0 Examples
» One to one
A
Num VarA
1 al Data c; C
M, :
5 22 Berg'e é b
y num, Num VarA VarB
Run;,
> 1 al bl
B 2 a2 b2
Num VarB
1 bl
2 b2
B Q IREMSI SRIEEER AR 27 S ERRISESASES B TE

&

‘ Merging (10)

Data c,
Merge a b/,
By num/

Run;

0 Examples
» One to multiple
A
Num VarA
1 al
2 a2
B
Num VarB
1 bl
1 b2

Bp) dtamsit sumemnas

B/
<4

28

v

C
Num VarA VarB
1 al bl
1 a2 b2
2 a2
BT STSASES R e

‘ Merging (11)

0 Examples
» multiple to multiple
A
Num VarA
1 al
1 a2 Data c;, C
Merge a b/, Num VarA VarB
1 a3 By num;
Run 1 al bl
B " 1 a2 b2
Num VarB 1 a3 b2
1 bl 2 b3
1 b2
B Q IREMSI SRIEEER AR 29 KSR STSAS IS RS

&

' Updating (1)

§ Updating

» Updating a SAS data set replaces the values of variables in one data set
(the master data set) with values from another data set (the transaction
data set).

» The general form of the UPDATE statement is
UPDATE master-SAS-data-set transaction-SAS-data-set;

BY identifier-1list;

where

[master-SAS-data-set is the SAS data set containing information you want to
update.

[transaction-SAS-data-set is the SAS data set containing information with
which you want to update the master data set.

[identifier-list is the list of BY variables by which you identify corresponding
observations.

B 13) I SKEEERAS 30 ISERFSESAS B R
\&

‘ Updating (2)

Data c;,

Update a b,

by num/
Run;,

g Example

A (Master)

Num VarA
1 al
a2
3 a3

B (Transaction)

Num VarA
1 bl
2 b2

B\ ecmsit SyEmmnas
&

31

v

Num VarA
1 bl
b2
3 a3
KSR FISTSASTS B4 ie

‘ Updating (3)

0 Understanding how to select BY variables

» The master data set and the transaction data set must be
sorted by the same variable or variables that you specify in the BY
statement.

» The values of by variables should be unique for each observation
In the master data set.

» SAS warns you if it finds duplicates but proceeds with the update.
It applies all transactions only to the first observation in the BY
group in the master data set.

ccccccccccccccccc

) AT SR A 2 RS SAS S

‘ Updating (4)

0 Understanding the differences between updating and
merging

» The Update statement uses only two dataset. The number of data
sets that the Merge Statement can use is limited only by machine-
dependent factors such as memory and disk space.

» A BY statement must accompany an UPDATE statement. The
Merge statement performs a one-to-one merge if no BY statement
follows it.

ccccccccccccccccc

) AT SR A 3 RS SAS S

‘ Updating (5)

» The two statements also process observations differently when a

dataset contains missing values or multiple observations in a By

group.

[During an update, if a value for a variable is missing in the transaction
data set, SAS uses the value from the master data set when it writes

the observation to the new data set. When merging the same
observations, SAS overwrites the value in the program data vector
with the missing value.

[SAS does not write an updated observation to the new data set until it
has applied all the transactions in a BY group. When merging datasets,

SAS writes one new observation for each observation in the dataset
with the largest number of observations in the BY group.

B\ ecmsit SyEmmnas a4 PR TS ISASTE R
\&

‘ Updating (6)

9 Handling missing values

» Use the UPDATEMODE option on the UPDATE statement
The Syntax is as follows:
UPDATE master-SAS-data-set transaction-SAS-data
-set <UPDATEMODE=MISSINGCHECK | NONMISSINGCHECK>;
BY by-variable;

[The MISSINGCHECK value in the updatemode option prevents
missing value in the transaction dataset from replacing values
in a master data set.

[The NONMISSINGCHECK value in the UPDATEMODE option enable
missing value in the transaction dataset to replace values in a master
dataset by preventing the check for missing data from being
performed.

-

B PR IR SRR AL 3 RS ISASE R
\&

' Modifying (1)

® \odifying
» Modifying a SAS data set replaces, deletes,or appends
observations in an existing dataset.
» Modifying a SAS data set is similar to updating a SAS data set,

but the following differences exists:
[Modifying cannot create a new data set, while updating can.
[Unlike updating, modifying does not require that the master data set
or the transaction data set be sorted.

ccccccccccccccccc

) AT SR A % RS SAS S

' Modifying (2)

0 You can use modify statement in data step to do the
following:

» Replace values in a data set.

» Replace values in a master data set with values from a
transaction data set.

» Append observations to an existing SAS data set.

» Delete observations from an existing SAS data set.

=]

nnnnnnnnnnnnnnnnnnnnn

B 'BA LR ESIT SBUREEKS 37 IR RFFFTSAS R SRIE

‘ Modifying (3)

g Replace values in a data set
» The syntax for using the Modify statement and the By statement is:

MODIFY SAS-data-set;

Data a;,
Modify a;
VarA=VarA*2,

Run;,

a
Num VarA
1 2.5
2 3.5
NG

_"/2\ eiiin

38

v

b
Num VarA
1
2
KSR SESASE RIS

' Modifying (4)

§ Replace values in a master data set with values from a transaction
data set

» The syntax for using the MODIFY statement and the By statement is:

Bp
=

Modify master-SAS-data-set transaction-data set;
BY by-variable;

The master-SAS-data-set specifies the SAS data set that you
want to modify. The transaction-SAS-data-set specifies the

SAS data set that provides the values for updating the master
data set. The by variable specifies one or more variables by
which you identify corresponding observations.

bR SRR SRR S 39 IR RFFFTSAS R SRIE

ccccccccccccccccc

‘ Modifying (5)

g Example
Master
Num VarA
1 1 Data master;
a Modify master
a2 transaction,
By num/
3 a3 Run
Transaction
Num VarA
2 bl
1 b2

&

B\ ecmsit SyEmmnas

ooooooooooooooooo

40

Master
Num VarA
1 b2
bl
3 a3
G R STSASE R miz

‘ Modifying (6)

0 Adding new observations to the master data set

» |f the transaction data set contains an observation that does

» Not match an observation in the master data set, then SAS writes
a new observation to the master data set if you use an explicit output
statement in your program.

master
Num VarA Data master; master
Modify master
1 al transaction; Num VarA
2 a2 By num; 1 al
- Output,
fransaction Run; ‘ 2 az

Num VarA 3 a3

2 bl

B Q st SHEEERaS 4 IS ERAISTSAS B e

&

‘ Modifying (7)

' How the data step processes duplicate by variables
» The data step process duplicate observations in the following way:

» If duplicate by values exists in the master data set, then Modify
applies the current transaction to the first occurrence in the master
data set.

» |f duplicate by values exists in the transaction data set, then the
observation are applied one on top of another so that the values
overwrites each other. The value in the last transaction is the final
value in the master data set.

» If both the master and the transaction data sets contain duplicate
BY values, then Modify applies each transaction to the first
occurrence in the group in the master data set.

B 13} I SKEEERAS @ PR BSESAS B
\&

‘ Modifying (8)

0 Handling missing values

» By default, if the transaction data set contains missing values for a
variable that is common to both the master and the transaction data sets,
then the MODIFY statement does not replace values in the master data set
with missing values.

» |f you want to replace values in the master data set with missing values,
then you use the UPDATEMODE= option on the MODIFY statement.

[The syntax is:
MODIFY master-SAS-data-set transaction-SAS-data-set
<UPDATEMODE=MISSINGCHECK | NOMISSINGCHECK>;

BY by-variable;

[MISSINGCHECK prevents missing values in the transaction data set from
replacing values in the master data set. This is the default.

[NOMISSINGCHECK enables missing values in a transaction data set to
replace values in the master data set by preventing the check for missing data
from being performed.

B PR SR SRR AL 2 PR TS SAS A SRR
\&

Quiz

¢ If you concatenate the data sets below in the order shown, what is
the value of Sale in observation 2 of the new data set?

males Heps males. Close males. Bonus
ID [Name ID Sale ID [Bonus
1 |May Rong 1|§28,000 1|%2,000
2 |Kelly Windsor 2 |$30,000 2 [$4,000
3 [Julio Meraz 2 | f40,000 2 ($3,000
4 |Richard Krabill 2|&15,000 442,500
3| §20,000
3| 25,000
4| $35,000
a. Missing b. $30,000
c. $40,000 d. you cannot concatenate these data sets

» Correct answer: a

[The concatenated data sets are read sequentially, in the order in which they are listed in the
SET statement. The second observation in Sales.Reps does not contain a value for Sale, so
a missing value appears for this variable. (Note that if you merge the data sets, the value of
Sale for the second observation is $30,000.)
B N bt SEiEemEas o ISERFSESAS B R

ﬂ 3 eijing ometric Association

Quiz

0 What happens if you merge the following data sets by the variable

15t 2nd
?
SSN) 55N Age 55N Age | Date

029-45-9261 | 39 029-46-9261| 37|02/15/95
074-53-8592 | 34 O74-53-9892 | 32 |0&8/22/97
2258-88-9649 | 32 228-88-9649 | 30(03/04/96
442218075 | 12 442-21-8075| 10(11/22/95
445-93-2122 | 3B 446-93-2122 | 34 (07/08/96
77B-84-5391 | 28 776-84-5391| 26|12/15/96
sravs0ng | & 929-75-0218 | 25|04/30/97

a. The values of Age in the 1st data set overwrite the values of Age in the 2nd data set.

b. The values of Age in the 2nd data set overwrite the values of Age in the 1st data set.

c. The DATA step fails because the two data sets contain same-named variables that have
different values.

d. The values of Age in the 2nd data set are set to missing.

» Correct answer: b

[If you have variables with the same name in more than one input data set, values of the
same-named variable in the first data set in which it appears are overwritten by values of the
same-named variable in subsequent data sets.

B Q G SHEEER A 4 IS BRRSESASE B2
\&

‘ Quiz

g If you merge Company.Staffl and Company.Staff2 below by ID,

how many observations does the new data set contain?

B@
&

Company. Staffl

Company. Staff2

ID (Name |Dept| Project ID [Mame |Hours
000 [Miguel |Al2 |Document 111 |Fred 35
111 |Fred B45 |Survey 222 |Diana 40
222 |Diana B45 |Document V7T | Steve 0
888 [Monique |Al12 |Document 288 |Monigue 37
999 | Yien DO3 |Survey

» Correct answer: C

[In this example, the new data
set contains one observation for
each unique value of ID. The
merged data set is shown below.

ometric Association

46

a.4

C.6
ID (Mame |Dept| Project Hours
0oo{Miguel |A12 |Document
111 |Fred B4E |Survey 35
222 |Diana B45 |Document 40
PV | Steve 0
838 [Monique | A12 |Document 37
999 | Yien D03 |Survey

IR ST SASE R 4RTE

‘ Transpose procedure (1)

0 Objective

» The transpose procedure creates an output data set by
restructuring the values in a SAS data set, transposing selected
variables into observations.

» The transpose procedure can often eliminate the need to write a
lengthy DATA step to achieve the same result.

» Further, the output data set can be used in subsequent DATA or
PROC steps for analysis, reporting, or further data manipulation.

» A transposed variable is a variable that the procedure creates by
transposing the values of an observation in the input data set into
values of a variable in the output data set.

Refer to example 1

B 13} I SKEEERAS 47 PR BSESAS B
\&

' Transpose procedure (2)

‘ Syntax

PROC TRANSPOSE <DATA=input-data-set><LABEL=label><LET>
<NAME=name><OUT=output-data-set><PREFIX=prefix>;
BY <DESCENDING> variable-1
<..<DESCENDING> variable-n>
<NOTSORTED>;
COPY variable(s) ;
ID variable;
IDLABEL variable;
VAR variable(s) ;
BY : Transpose each BY group
COPY : COPY variables directly without transposing them
ID : Specify a variable whose values name the transposed variables
IDLABEL.: Create labels for the transposed variables
VAR: List the variables to transpose

B P} SR SRR AL 48 PR TS SAS A SRR
\&

' Transpose procedure (3)

' Proc transpose statement
» YOou can use data set options with the data= and OUT= options.
PROC TRANSPOSE <DATA=input-data set> <LABEL=label>
<LET> <NAME=name> <OUT=output-data-set>
<PREFIX=prefix>;

[DATA=input-data-set names the SAS data set to transpose
Default: most recently created SAS data set
[LABEL=label

specifies a name for the variable in the output data set that contains the label of
the variable that is being transposed to create the current observation.

Default: LABEL _
[LET

Allows duplicate values of an ID variable. PROC TRANSPOSE transposes the
observation that contains the last occurrence of a particular ID value within the
data set or BY group.

B PR SR SRR AL 49 PR TS SAS A SRR
\&

‘ Transpose procedure (4)

[NAME=name

Specifies the name for the variable in the output data set that contains
the name of the variable that is being transposed to create the current
observation.

[Out=output-data-set

Names the output data set. If output-data-set does not exists, then
PROC Transpose creates it by using the DATAn naming convention.

Default: DATAN
[Prefix=prefix

Specifies a prefix to use in constructing names for transposed
variables in the output data set.

For example, if PREFIX=VAR, then the names of the variables are
VAR1, VAR2, ..., VARN.

Interaction: When you use PREFIX= with an ID statement, the value
prefixes to the ID value.

B PR IR SRR AL 50 RS ISASE R
\&

' Transpose procedure (5)

' By statement
» Defines BY groups.

» The syntax:
BY <DESCENDING> variable-1

<..<DESCENDING> wvariable-n>
<NOTSORTED>;
» Required Auguments:
Variable: specifies the variable that PROC TRANSPOSE uses to
form By groups.you can specify more variables.If you do not use
the notsorted option in the BY statement, then either the
observations must be sorted by all the variables that youspecify,

or they must be indexed appropriately.Variables in a BY statement
are called BY variables.

NG g WSS BRI

' Transpose procedure (6)

» Options

[DESCENDING
specifies that the data set is sorted in descending order by the variable
that immediately follows the word DESENDING in the BY statement.

[NOTSORTED

specifies that observations are not necessarily sorted in alphabetic or numeric
order.

» Transposition with BY groups

Bp
=

[PROC TRANSPOSE does not transpose BY groups.

[For each BY group, PROC TRANSPOSE creates one observation for each
variable that it transposes.

[If a BY group in the input data set has more observations than other BY groups,
then PROC TRANSPOSE assigns missing values in the output data set to the
variables that have no corresponding input observations

The following figure show what happens when you transpose a
dataset with BY groups.

bR SRR SRR S 52 IR RFFFTSAS R SRIE

cccccccccccccccc

' Transpose procedure (7)

TTPE MONTH SOLD HOTSOLD REPAIRED JUNFED
inpt | o odan feb 28 9 49 2
data s=t sports jan 16 6 15 0
Spo res fek 19 7T 20 1
erucks feb a5 3 22 4
| TveE _NAME_ corl COL2
sadan SOLD 26 28
saedan NOTSOLD [9 |—
sedan REPARIRED 41 42 |e—
sadan JUNEEL 4 2 |
output Sports SOLD 16 19
data ==t = sSports NOTSOLD & 7
sports EEPRIRED 15 20
sporcs JUNEED 0 1
trucks SOLD 29 a5
trucks NOTSOLD 1 £
trucks REPAIRED 20 22
trucks JUNEEL 3 4
B N b5 SERammea 53

_‘/Z\ eijing

Biometric Associat on

R ST SAS S R 4mTE

' Transpose procedure (8)

‘ Copy statement

» Copies variables directly from the input data set to the output data
set without transposing them.

» The syntax:

COPY wvariable(s) ;

» Required Argument
Variable(s)
Names one or more variables that the COPY statement copies
directly from the input data set to the output data set without
transposing them.

ccccccccccccccccc

) AT SR A 54 RS SAS S

' Transpose procedure (9)

@ D statement

» Specifies a variable in the input data set whose formatted values name
the transposed variables in the output data set. (Example 2)

» The syntax:
ID variable;

» Required argument
Variable : Names the variable whose formatted values names the
transposed variables.

» Duplicate ID values

[Typically ,each formatted ID values occurs only once in the input data set or
within a BY group if using BY statement.

[Duplicate values cause PROC TRANSPOSE to issue a warning message and
stop.

[If using LET option, the procedure will issue a warning message and transpose
the observation that contains the last occurrence of the duplicate ID values.

Refer to example 5.

B 13) I SKEEERAS 55 ISERFSESAS B R
\&

‘ Transpose procedure (10)

» Making variable names out of numeric values

[PROC TRANSPOSE changes the formatted ID value into a valid SAS
name when you use a numeric variable as an ID variable.

[When the first character of the formatted value is numeric,the
procdure
O prefixes an underscore to the value
O Truncates the last character of a 32-character value

[Any remaining invalid character are replaced by underscores.

[If the formatted value looks like a numeric constant, then PROC
TRANSPOSE changes the characters ‘+',’-', and *.” to ‘P’,’N’, and ‘D’,
respectively. If the formatted value has characters that are not
numerics,then PROC TRANSPOSE changes the characters ‘+’,’-’,and
" to underscore.

B ?} SR SRR AL 56 PR TS SAS A SRR
\&

‘ Transpose procedure (11)

» Missing values

[If you use an ID variable that contains a missing value, then PROC
TRANSPOSE writes an error message to the log.

[The procedure does not transpose observations that have a missing
value for the ID variable.

B PR IR SRR AL 57 RS ISASE R
\&

' Transpose procedure (12)

‘ IDLABEL statement

» Create labels for the transposed variables
» Must appear after an ID statement
» The syntax:

IDLABEL variable;

» Required argument
Variable:

names the variable whose values the procedure uses to label
the variables that ID statement names. Variables can be
character or numeric.

Refer to example 3.

) AT SR A 58 RS SAS S

ccccccccccccccccc

' Transpose procedure (13)

' Var statement
» Lists the variables to transpose
» The syntax:
Var variable(s) ;
» Required argument
Variable(s)

Names one or more variables to transpose

» |f you omit the VAR statement, then the tranpose procedure
transposes all numeric variables in the input data set that are not
listed in another statement.

» You must list character variables in a VAR statement if you want
to transpose them.

Bp)\ dSemsiit SuiR e s 59 RS SAS S
Bp dtsEmit SsEEERas

‘ Transpose procedure (14)

‘ Results

» The transpose procedure always produce an output data set, but does not
print the output data set.

» The output data set contains the following variables:
[Variables that result from transposing the values of each variable into and observation.

[A variable that PROC TRANSPOSE creates to identify the source of the values in each
observation in the output data set. The default variable name is _NAME .

[Variables that PROC TRANSPOSE copies from the input data set when you use either the
BY or COPY statement.

[A character variable whose values are the variable labels of the variables that are being
transposed. The default variable name is _LABEL .

» Attributes of transposed variables:
[All transposed variables are the same type and length.

[If all variables that the procedure is transposing are numeric, then the transposed variables
are numeric .

[If any variable that the procedure is transposing is character, then all transposed variables
are character.

[The length of the transposed variable is equal to the length of the longest variable that is
being transposed.

B P} I SRR AR 60 ISR A IR
\&

' Transpose procedure (15)

0 Names of transposed variables

» An ID statement specifies a variable in the input data set whose
formatted values become names for the transposed variables.

» The PREFIX= option specifies a prefix to use in constructing the
names of transposed variables.

» |f you do not use ID statement or the PREFIX=option, then PROC
TRANSPOSE looks for an input variable called NAME__from which
to get the names of the transposed variables.

» |f you do not use ID statement or the PREFIX=o0ption, and if the
Input data set does not contain a variable named _NAME _, then
PROC TRANSPOSE assigns the names COL1,COL2,...,COLn to
the transposed variable.

NG . WSS BRI

‘ Transpose procedure (16)

g Example 1-Performing a simple transposition

A
sudert | sid | teste] | testerd?
dim) 22 2
Johin 02 15 13
Proc transpose data=a Out=b;
Run;
B
MAME OF
FORMER COL1 coL2
VARIAELE
tester] 22 15
tester. 20 13
B _BR I SRR AR 62 PR BSESAS B

&

‘ Transpose procedure (17)

g Example 2-Naming transposed variables

Proc transpose data=a

prefix=sn;

A
sudent | sl | testerl | testar?
Jim 01 22 i
Jahn 02 15 19
out=c
name=Test
C ID StulD;
MARME OF
FORMER ani1 ‘ anlZ Run;
YoaRIABLE
teszter 2 15
teszters 20 19

B \d ISR SRR A

% jing Biometric Association

R ST SAS S R 4mTE

‘ Transpose procedure (18)

g Example 3-Labeling transposed variables

A
sudent | suid | tested | tester?
i I 2 2
J? 0 e 9 Proc transpose data=a
ann
Out=d
name=Test
prefix=sn;
ID StulD;
D IDLABEL student;
MAME OF .
FORMER Jir ‘ John ‘ Run;
VARIAELE
tezter] 22 15
testers 25 13
By) dEsecsii SEiEmmEas s B SSAS B

&

‘ Transpose procedure (19)

g Example 4-Transposing by groups

E

Location | Date | Lenghl | Lengh? | Lengthd | Lengthd |
Cole Pond A N 22 2 13
Cole Pond 03JULa5 23 kL kN 32
Eagle Lake H2JLINT5E 32 32 33

MAakdE OF
Location D ate FORMER CoLd
wAaRIABLE
Cole Fond 02JJM35 Lengthl c)
Cole Fond 02J M35 Lengthz2 a2
Cole Fond o2JdMes Length3 a2
Cole Fand o21UME9s Lengthd a3
Cole Fand QI35 Lengthl a3
Cole Fand azIULg5 LengthZ a4
Cole Faond aZIULg5 Length3 ar
Cale Fand a1l Lg5 Lengtha a3z
Eagle Lake 02JJM35 Lengthl a2
Eagle Lake 02J M35 Lengthz2 a2
Eagle Lake o2JdMes Length3 a3
E agle Lake o21UME9s Lengthd
Bp \ dtemsit SuiREEnas %

<4

Proc

Run;

transpose

data=e

Out=f;

Var lengthl-length4;
By location date;

R ST SAS S R 4mTE

‘ Transpose procedure (20)

g Example 5-Naming transposed variables when the ID variable has

duplicate values

Proc transpose

G

Cornpary | D ate | Tirne Frice
Harizon Kites jun1i opEning 29
Harizon Kites jun1i (gTululy] 27
Harizon Kites jun1i clozing 27
Harizon Kites junlz opening 27
Harizon Kites junlz (gTululy] 28
Horizon Kites junlz clozing 20
SkyvHi Kites ju nll opEning 43
SkyvHi Kites ju nll noor 43
SkyHi Kites ju nii clozing 44
SkyHi Kites ju nlz opening 44
SkyHi Kites ju nlz (gTululy] 45
SkyHi Eites ju nlz clozing 45

H
MakE OF ‘ ‘ ‘
Compari FORMER url unl2 nll iz
WiaRIABLE
Horizon Kites Frice 27 a0)
SkyHi Eites ju Frice . . a4
B\ Aottt Sumemnas .

<4

data=g

Out=h let;

By company;

Id date;
Run;

45 .

R ST SAS S R 4mTE

' Subset

. Contents

» Acting on selected observations
» Creating subset of observations

B P} SR SRR AL 67 PR TS SAST RS
\&

' Acting on selected observations (1)

® objective

» Learn how the selection process works

» Learn how to write statements that select observations based
on a condition

» Learn some special points about selecting numeric and
character variables

ccccccccccccccccc

) AT SR A 68 RS SAS S

' Acting on selected observations (2)

0 Selecting observations

» Understanding the selection process
The most common way that SAS selects observations for action
iIn a DATA step is through the IF-THEN statement:

IF condition THEN action;
For example,
if City=‘Rome’ then Landcost=landcost+30;

[When the condition is true, SAS takes the action in the THEN clause

[When the condition is false, SAS ignores the THEN clause and
proceeds to the next statement in the DATA step.

ccccccccccccccccc

) AT SR A 9 RS SAS S

' Acting on selected observations (3)

» Providing an alternative action
[A second IF-THEN statement

For example:
if NumberOfEvents > Nights then Calendar=‘Check chedule’;
if NumberOfEvents <= Nights then Calendar = 'No problems’;

[An ELSE statement
ELSE action;

For example;
if NumberOfEvents > Nights then Calendar=‘Check schedule’;
else Calendar = 'No problems’;

B N dbsemgit SuEempas 70 ISR A IR

—/‘\ Beijing Biometric Associa tion

' Acting on selected observations (4)

» Creating a series of mutually exclusive conditions
[A series of IF-THEN and ELSE statements

For example:

if LandCost >= 1500 then Price = 'High ’;
else if LandCost >= 700 then Price = ’'Medium’;
else Price = 'Low’;

[When an observation satisfies one condition in a series of mutually
exclusive IF-THEN/ELSE statements, SAS processes that THEN
action and skips the rest of the statements.

[You can increase the efficiency of a program by ordering the IF-THEN/
ELSE statements so that the most common conditions appear first.

B 13) SR SRR AL g PR TS SAS A SRR
\&

‘ Acting on selected observations (5)

g Constructing conditions

» Understanding construct conditions
Comparison operators

Symbol Mnemonic Operator Meaning

= EQ equal to

=, f=, ~= NE not equal to (the -, *, or ~ symbol,
depending on your keyboard)

= GT greater than

< LT less than

5= GE greater than or equal to

<= LE less than or equal to

You can use either symbol or mnemonic operators in comparisons. But
remember that Mnemonic operators are used only in comparisons

For example, the equal sign in an assignment statement must be
represented by the symbol =, not the mnemonic operator.

B\ it Shmemnas
&

72 SR FTSASER R ts

' Acting on selected observations (6)

» Using more than one comparison in a condition

&

[Specifying multiple comparisons
& or AND
| or OR
A condition can contain any number of ANDs, ORs, or both.

[When comparisons are connected by AND, all of the comparisons must be true
for the condition to be true.

For example,
if City = ’'Paris’ and TourGuide = ’'Lucas’ then
Remarks= ’'Bilingual’ ;
The comparison is true for observations in which the value of City is Paris and
the value of TourGuide is Lucas.

[When comparisons are connected by OR, only one of the comparisons need to
be true for the condition to be true.

For example,
if LandCost gt 1500 or LandCost / Nights gt 200 then
Level = ’'Deluxe’;

Any observation in which the land cost is over $1500, the cost per night is over
$200,0r both, satisfies the condition. The following DATA step shows this
condition.

B 13) IS SRR A 73 SR RSESAS S RS

cccccccccccccccc

' Acting on selected observations (7)

[Using complex comparisons that requires AND and OR
When a condition contains both ANDs and ORs, SAS evaluates the ANDs before the ORs.
For example,
if City = 'Paris’ or City = 'Rome’ and TourGuide = ’'Lucas’ or
TourGuide = "D’Amico" then Topic = ’'Art history’;
SAS first joins the items that are connected by AND:
City = 'Rome’ and TourGuide = ’'Lucas’
Then SAS makes the following OR comparisons:
City = ’'Paris’
or
City = 'Rome’ and TourGuide = ’Lucas’
Or
TourGuide = "D’Amico"
To group the city comparisons and the Tourguide comparisons, use parentheses:
if (City = ’'Paris’ or City = 'Rome’) and
(TourGuide = ’'Lucas’ or TourGuide = "D’Amico") then
Topic = 'Art history’;

SAS evaluates the comparsions within parentheses first and uses the results as the terms
of the larger comparsion.

B 13} SR SRR AL 74 PR TS SAS A SRR
\&

‘ Acting on selected observations (8)

[Abbreviating numeric comparisions

In SAS, any numeric value other than 0 or missing is true, and a value
of O or missing is false.
Therefore, a numeric variable or expression can stand alone in a
condition.
For example,

if LandCost then Remarks = ’'Ready to budget’;
The statement is equivalent to

if LandCost ne . and LandCost ne 0 then

Remarks = 'Ready to budget’;

Be careful when you abbreviate comparisons with OR, it is easy to
produce unexpected results
For example, this IF-THEN statement selects tours that last six or
eight nights:

if Nights = 6 or 8 then Stay = ’'Medium’ ;
SAS treats the condition as the following comparisons:

Nights=6 or 8
The correct way should be:

if Nights = 6 or Nights = 8 then Stay = ’'Medium’;

B PR SR SRR AL 75 PR TS SAS A SRR
\&

' Acting on selected observations (9)

» Comparing characters
[Use the UPCASE function to produce an uppercase value to compare
values that may occur in different cases
For example,
if upcase(City) = 'MADRID’ then TourGuide = ’'Balarezo’;

[To compare a long value to a shorter standard, put a colon (;) after the
operator, as in the example:
if TourGuide =: ’'D’ then Chosen = ’'Yes’;
else Chosen = 'No’;
The colon causes the SAS to compare the same number of characters

in the shorter value and the longer value. Thus, in this example, all
names beginning with D will make the comparison true.

B 13) I SKEEERAS 76 ISERFSESAS B R
\&

‘ Acting on selected observations (10)

[Points to understand to select a range of character values

In computer processing, letters have magnitude. A is the smallest
letter in the alphabet and Z is the largest. Therefore, the comparison

A<B is true; so is the comparison D>C.
A blank is smaller than any letter.

The following statements divide the names of the guides into two
groups beginning with A-L and M-Z by combining the comparison
operator with the colon.

if TourGuide <=: 'L’ then TourGuideGroup = 'A-L’;

else TourGuideGroup = 'M-Z’;

[All names beginning with A through L, as well as the missing value, go
into group A-L. The missing value goes into that group because a
blank is smaller than any letter.

B ?} SR SRR AL 7 PR TS SAS A SRR
\&

' Acting on selected observations (11)

[Finding a value anywhere within another character value

The INDEX function determines whether a specified character string
(the excerpt) is present within a particular character value (the source)

INDEX (source,excerpt);

[Both source and excerpt can be any kind of character expression,
including character strings enclosed in quotation marks, character
variables and character functions.

O If excerpt does occur within source, then the function returns the position
of the first character of excerpt, which is a positive number.

O If it does not, then the function returns a 0.
The following statements select observations containing the string

other:
if index (EventDescription,’other’) > 0 then
OtherEvents = ’'Yes’
else OtherEvents = 'No’;
-
Bp)\ dSemsiit SuiR e s 78 S e P

DA\ Beliing siometric Association

' Creating subset of observations (1)

§ Objective

» Create a new SAS data set that includes only some of the
observations from the input data source

» Create several new SAS data sets by writing observations
from an input data source,using a single DATA step

NG ” WSS BRI

' Creating subset of observations (2)

' Selecting observations for a new SAS data set
» Deleting observations based on a condition
To delete an observation, first identify it with an IF condition,

then use a DELETE statement in the THEN clause:
IF condition, THEN DELETE;

For example,
IFF Landcost=. THEN delete;

» Accepting observations based on a condition
To select only observations meeting the criterion, the subsetting IF
statement selects the observations that you specify:
IF condition;

For example,
IF Nights = 6 ;

Bp)\ dSemsiit SuiR e s 80 RS SAS S
Bp dtsEmit SsEEERas

' Creating subset of observations (3)

9 Comparing the DELETE and subsetting IF statement

» Main reason for choosing

[It's usually easier to choose the statement that requires the fewest
comparisons to identify the condition.

[It's ususally easier to think in positive terms than negative terms(This
favors the subsetting IF)

ccccccccccccccccc

) AT SR A 81 RS SAS S

‘ Creating subset of observations (4)

‘ Conditionally writing observations to one or more SAS
data sets

» Understanding the output statement
Create multiple SAS data sets in a single DATA step using an
OUTPUT statement
OUTPUT <SAS-data-sets)>;
[If not specifying a data set name, SAS writes the current observation

to all data sets named in the DATA statement.

[If specifying a data set name, SAS writes the observation to the
selected data set.

[Any data set name appearing in the output statement must also
appear in the DATA step.

ccccccccccccccccc

) AT SR A 82 RS SAS S

‘ Creating subset of observations (5)

» Example for conditionally writing observations to multiple data sets

A

Mame | Sex| Age | weight
Alfred hd 14 B3 1125
Alice F 13 BE.5 24
Barbara F 13 BG.3 93
Carol F 14 B2.8 1025
Henry b 14 3.5 102.5
Janet F 15 E2.5 1125
Jeffrey b 13 B2.5 o4
Juady F 14 G4.3 a0
b ary F 15 EE.B 112
Fhilip b 16 T2 150
Ronald b 15 E¥ 133
Wwilliam hd 15 BE.B 112

data b c;
set a;

if sex='M' then output b;

else output c;

run,

B N TSR

_B/,\

&

metric A

BEHKAS
ssociat

A

on

83

Marne | Se:-:| Age | Height Weight

1 Alfred b 14 B3 125

2 Heniny b 14 B35 1025

3 Jeffrey b 13 E25 24

4 Philip b 1E 72 150

] Ronald M 15 &7 133

E “illiarn f 15 BE.5 12

C
Mame | Sex| Age | Height | wieight |
Alice F 13 5E.5 g4
Barbara F 13 E5.3 95
Carol F 14 628 1025
Janet F 15 625 1125
Judy F 14 £4.3 90
b ary F 15 GE.S 12
IR ST SASE R 4RTE

‘ Creating subset of observations (6)

» If you plan to use any OUTPUT statements in a DATA step, then
you must program all output for that step with output statements

» \When you use an output statement, you override the automatic
output feature, thus where you place the output statement is very
Important. For example, if a variable value is calculated after the
OUTPUT statement executes, then that value is not available when
the observation is written to the output data set.

» You can write an observation multiple times to one or more data
sets using output statement.

-

Bp)\ dSemsiit SuiR e s 84 RS SAS S S

‘ Data View (1)

‘ Definition:

» A SAS data view is a type of SAS data set that retrieves data
values from other files.

» A SAS data view contains only descriptor information such as data
types and lengths of the variables (columns), plus information that is
required for retrieving data values from other SAS data sets or from
files that are stored in other software vendor’s file formats.

» SAS data views are of member type VIEW.

» In most cases, you can use a SAS data view as though it were a
SAS data file.

444444444444444444

B ?) IS SRR A 85 SR RSESAS S RS

' Data View (2)

0 Types of data views

» Native view
IS a SAS data view that is created either with a DATA step or with
PROC SQL.

» Interface view

IS a SAS data view that is created with SAS/ACCESS software.

[An interface view can read data from or write data to a database
management system (DBMS) such as DB2 or ORACLE.

[Interface views are also referred to as SAS/ACCESS views.

ccccccccccccccccc

) AT SR A 86 RS SAS S

‘ Data View (3)

0 Benefits of using SAS data views

» Instead of using multiple DATA steps to merge SAS data sets by
common variables, you can construct a view that performs a multi-
table join.

» You can save disk space by storing a view definition, which stores
only the instructions for where to find the data and how it is formatted,
not the actual data.

» Views can ensure that the input data set are always current
because data is derived from views at execution time.

» Since views can select data from many sources, once a view is
created, it can provide many prepackaged information to the
iInformation community without the need for additional programming.

B 13} I SKEEERAS &7 PR BSESAS B
\&

' Data View (4)

» Views can reduce the impact of data design changes on users.
For example, you can change a query that is stored in a view without
changing the characteristics of the view’s result.

= With SAS/CONNECT software, a view can join SAS data sets that
reside on different host computers, presenting you with an integrated
view of distributed company data.

ccccccccccccccccc

) AT SR A 8 RS SAS S

' Data View (5)

» The following figure shows native and interface SAS data

B)
&

BA S

views and their relationship to SAS data files:

SAS Data Sets

SAS Data Fles

SAS Data Views

(Data) (View)
DATA Step View
(DATA Step)
Native Interface
(PROC SQL) (SAS/ACCESS)
LS SRR EERAS 89

cccccccccccc

iation

R ST SAS S R 4mTE

‘ Data View (6)

' You can use views in the following ways:
» As an input to other DATA steps or PROC steps

» To migrate data to SAS data files or to database management
systems that are supported by SAS.

» In combination with other data sources using PROC SQL

» As pre-assembled sets of data for users of SAS/ASSIST software,
enabling them to perform data management, analysis, and reporting
tasks regardless of how the data stored.

' When to use SAS data views

» Data files use additional disk space, data views use additional
processing time

» Data file variables can be sorted and indexed prior to use; data
views must process data in its existing form during execution.

B 13} I SKEEERAS 9 PR BSESAS B
\&

' Data View (7)

0 Data step views

» A native view that has the broadest scope of any SAS data view.
» |t contains stored DATA step programs that can read data from a
variety of sources, including

[Raw data files

[SAS data files

[PROC SQL views

[SAS/ACCESS views

[DB2, ORACLE, or other DBMS data

ccccccccccccccccc

) AT SR A 91 RS SAS S

‘ Data View (8)

» Create Data step views

[Specify the VIEW= option after the final data set name in the DATA
statement

[The VIEW= option tells SAS to compile, but not to execute, the source

program and to store the compiled code in the input DATA step view
that is named in the option.

For example, the following example create a DATA step view named
DEPT.A

libname dept ’'SAS-data-library’;,
data dept.a / view=dept.a;

.. more SAS statements ..

run;,
B PR IR SRR AL 72 RS ISASE R
\&

‘ Data View (9)

» \What can you do with a data step view
[Directly process any file that can be read with an INPUT statement

[Read other SAS data sets

[Generate data without using any external data sources and without
creating an intermediate SAS data files.

» Differences between Data step views and stored compiled data

step programs

[A Data step view is implicitly executed when it is referenced as an
input data set by another data or proc step. Its main purpose is to
provide data, one record at a time, to the invoking procedure or Data
step

[A stored compiled DATA step program is explicitly executed when it is
specified by the PGM= option on a DATA statement. Its purpose is
usually a more specific task, such as creating SAS data files, or
originating a report.

B 13} SR SRR AL 93 PR TS SAS A SRR
\&

' Data View (10)

» Restrictions and requirements
Global statements do not apply to a DATA step view.

» Performance considerations

[DATA step code executes each time that you use a view. This may
add considerable system overhead. In addition, you run the risk of
having your data change between steps.

[Depending on how many reads or passes on the data are required,
processing overhead increases.

© When one pass is requested, no data set is created. Compared to
traditional methods of processing, making one pass improves
performance by descending the number of input/output operations and
elapsed time.

© When multiple passes are requested, the view must build a spill file that
contains all generated observations so that subsequent passes can read
the same data that was read by previous passes.

B P} I SRR AR 94 ISR A IR
\&

' Data View (11)

» Example: Merging data to produce reports
If you want to merge data from multiple files but you don not need to
create a file that contains the combined data, you can create a DATA
step view of the combination for use in subsequent applications
libname myv9lib ' SAS-data-library’;
libname v9lr ’'SAS-data-library’;
data myv9lib.gtrl / view=myv9lib.qtrl;
merge v9lr.clothes v9lr.equip;
by date;
total = cl v9lr + eq v9lr;
run;
» The following PRINT procedure executes the view
proc print data=myv9lib.qgtrl;

run,

B 13} SR SRR AL 95 PR TS SAS A SRR
\&

' Data View (12)

» PROC SQL views
[A PROC SQL view in a PROC SQL query-expression that is

given a name and stored for later use.

[When you use a PROC SQL view in a SAS program, the view derives
its data from the data sets or views listed in its FROM clause.

[A PROC SQL view can read or write data from:

O Data step views

O SAS data files

© Other PROC SQL views

O SAS/ACCESS views

© DB2, ORACLE or other DBMS data

B 13) I SKEEERAS 9 ISERFSESAS B R
\&

' Data View (13)

9 Comparing data steps and PROC SQL views

» Data step views

[Data step views are versatile because they use DATA step processing,
including DO loops and IF-THEN/ELSE statements

[Data step views do not have write capability; that is, they cannot
directly change the data that they access.

[There is no way to qualify the data in a DATA step view prior to using
it. Therefore, even if you need only part of the data in your data view,
you must load into memory the entire DATA step view and discard
everything that you do not need.

) AT SR A 97 RS SAS S

ccccccccccccccccc

' Data View (14)

» PROC SQL views

[PROC SQL views can combine data from many different file formats

[PROC SQL views can both read and update the data that they
reference.

[PROC SQL supports more types of WHERE clauses than are
available in DATA step processing and has a CONNECT TO
component that allows you to easily send SQL statements and pass
data to a DBMS by using the Pass-Through Facility.

[You can also use the power of the SQL language to subset your data
prior to processing it. This saves memory when you have a large view,
but need to select only a small portion of the data contained in the
view.

[PROC SQL views do not use DATA step programming.

B ?} SR SRR AL 98 PR TS SAS A SRR
\&

‘ Data View (15)

@ sAS/ACCESS views

» A SAS/ACCESS view is an interface view, also called a view
descriptor, which accesses DBMS data that is defined in a
corresponding access descriptor.

» Using SAS/ACCESS software, you can create an access
descriptor and one or more view descriptors in order to define and
access some or all of the data described by one DBMS table or
DBMS view.

» You can also use view descriptors in order to update DBMS data,
with certain restrictions.

» In addition, some SAS/ACCESS products provide a dynamic
LIBNAME engine interface.

-

B 13} I SRR AR 9 e

